## 레벨 스위치 기종 선정 가이드



문의:sales@matsushima-m-tech.com

활용하기 전 안내 무엇이든 검출할 수 있는 완벽한 레벨 스위치는 존재하지 않습니다.복수의 레벨 스위치 중에서

물성, 측정환경, 설치조건, 외란 등의 주요조건을 고려하여 선정해야 합니다.

그러나 이들 조건은 더 세분화하면 십여 개 항목에 이르고 그 조합은 천문학적 숫자가 됩니다.

거기서 본가이드에서는 주요한 요인으로 좁혀 기종 선정할 수 있도록 시도했습니다.

활용법 처음에 측정물을 괴체, 입체, 분체, 액체, 슬러리, 액체 중 퇴적물 중 하나를 선택해 주십시오.

그 후 나머지 선택 항목에서 물성, 환경 요인을 필요한 수만큼 선정하십시오.

선택한 조건과 각 레벨 스위치 사이에 ○△×의 판정이 붙습니다.

그 중에서 가장 어려운 판정이 그 스위치의 종합평가(총판정)입니다.

종합 평가 중에서 가장 좋은 레벨 스위치를 선정해 주십시오. 또한 여러후보가 나타난 경우 설치조건이나 가격,유지관리성 등을 고려하여 선정할 것을 제안합니다. <판정 보는 법>

○ : 사용 가능

▲: 정도 문제, 또는 특수 사양이나 옵션등으로 어느 정도 대응 가능

× : 사용 불가

| 특성 및 환경요인 | 기종 정의              | 페들식 | 정전용량식<br><u> </u> | 어드미턴스식<br>(부착에 강한 정전용량식) | 진동식<br>(프로브)<br><br> | 진동식<br>(포크)<br> | 도전식<br> | 틸트식 | 베리어식 | 플로트식<br> | 전극식<br>- <del></del><br> |
|-----------|--------------------|-----|-------------------|--------------------------|----------------------|-----------------|---------|-----|------|----------|--------------------------|
| 괴체        | 입경10mm이상,50mm이하    | 0   | 0                 | 0                        | Δ                    | ×               | 0       | 0   | Δ    | ×        | ×                        |
| 입체        | 입경10mm미만           | 0   | 0                 | 0                        | 0                    | Δ               | 0       | 0   | 0    | ×        | ×                        |
| 분체        | 입경1mm미만            | 0   | 0                 | 0                        | 0                    | 0               | 0       | ×   | 0    | ×        | ×                        |
| 액체        | 물, 약품액 등           | ×   | 0                 | O                        | ×                    | 0               | ×       | ×   | ×    | O        | 0                        |
| 슬러리       | 점성이 높은 물체          | ×   | Δ                 | 0                        | ×                    | Δ               | ×       | ×   | ×    | ×        | ×                        |
| 액중 퇴적물    | 액체 속에 침전한 물체       | Δ   | ×                 | ×                        | Δ                    | ×               | ×       | ×   | ×    | ×        | ×                        |
| 저비중       | 0.5미만              | Δ   | 0                 | 0                        | 0                    | 0               | 0       | Δ   | Δ    | ×        | ×                        |
| 저유전율      | 2.0미만              | 0   | ×                 | ×                        | 0                    | 0               | ×       | 0   | Δ    | 0        | Δ                        |
| 고도전율      | 전기가 잘 통함           | 0   | Δ                 | Δ                        | 0                    | 0               | 0       | 0   | 0    | 0        | 0                        |
| 전기적특성변화   | 유전율, 도전율이 변화함      | 0   | ×                 | ×                        | 0                    | 0               | Δ       | 0   | Δ    | 0        | Δ                        |
| 거품 발생     | 거품의 영향으로 액면 측정 어려움 | ×   | Δ                 | Δ                        | ×                    | 0               | ×       | ×   | ×    | 0        | ×                        |
| 고온        | 80℃이상              | Δ   | Δ                 | Δ                        | Δ                    | Δ               | ×       | Δ   | Δ    | Δ        | Δ                        |
| 고압        | 대기압보다 큼            | ×   | Δ                 | Δ                        | Δ                    | Δ               | ×       | ×   | Δ    | ×        | Δ                        |
| 부식성       | 부식성이 있는 측정물        | Δ   | Δ                 | Δ                        | Δ                    | Δ               | Δ       | ×   | Δ    | Δ        | Δ                        |
| 부착성       | 클리닝이 가능한 정도        | Δ   | ×                 | Δ                        | ×                    | ×               | Δ       | 0   | Δ    | ×        | ×                        |

※△판정의 경우, 조건의 정도에 따라 판단이 달라지므로 제품 카탈로그나 제조사에 직접 문의하여 대응이 가능한지 확인하시기 바랍니다.

MM190019-01 /Nov.2019 마쓰시마 메저 테크

## <u>레벨 스위치의 종류</u>



레벨 스위치에는 물성이나 환경에 따라 여러 종류가 있고 기종에 따라 적합한 정도가 다릅니다. 이번에 소재 산업에서 이용되는 대표적인 레벨 스위치를 픽업하여 그 원리와 강점 및 약점를 표로 정리했습니다. 레벨 스위치의 선정은 물성·환경 등의 조건과의 매칭이 됩니다. 다음 페이지에 "기종 선정 가이드"에 정리했습니다.

문의:sales@matsushima-m-tech.com

| 레               | 페들식                                                                                                                                                                                              | 정전용량식                                                                                                                      | 어드미턴스식<br>[부착에 강한 정전용량식]                                                                                                                                    | 진동식<br>[프로브타입]                                                                                           | 진동식<br>[포크 타입]                                                 | 도전식<br>[리크 타입]                                                             | 틸트식                                                                                                                        | 마이크로파 베리어식                                                        | 플로트식                            | 전극식                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|
| · 벨<br>스 위<br>치 | <u> </u>                                                                                                                                                                                         | <u> </u>                                                                                                                   |                                                                                                                                                             |                                                                                                          |                                                                | <u>■</u>                                                                   |                                                                                                                            | <b>■-</b> -))) <b>-</b>                                           | Ţ                               | -                                                                          |
| 원리              | 회전하는 패들이 측정물에<br>덮여 구속되면 검출됩니다.                                                                                                                                                                  | 프로브와 탱크(금속제)가<br>전극이 되어 그 사이의 정<br>전용량의 변화를 파악하여<br>검출합니다.<br>전극 사이가 비어 있는 경<br>우와 측정물로 채워진 경<br>우의 정전용량 값의 변화<br>를 검출합니다. | 정전 용량식의 일종.<br>부착의 영향을 경감하기<br>위해 프로브 선단으로 센<br>싱하는 구조입니다.(일반적<br>인 정전용량식은 프로브<br>근본으로 센싱하기 때문에<br>부착의 영향을 받기 쉽다.)                                          | 진동하고 있는 프로브가<br>측정물로 덮이면 그 진동<br>이 작아져 그것을 감지하<br>여 검출합니다.                                               | 진동하고 있는 포크프로브<br>가 측정물로 덮이면 그 진<br>동이 작아지고 그것을 감<br>지하여 검출합니다. | 와이어로프와 탱크가 전국<br>이 되고 그 사이에 퇴적된<br>측정물이 전극 사이를 연<br>결하면 미소전류가 흘러<br>검출됩니다. | 센서부는 마이크로 스위치<br>와 철구로 구성되어 센서<br>가 측정물에 의해 경사지<br>면 마이크로 스위치 위의<br>철구가 굴러 떨어져 스위<br>치가 작동합니다.                             | 발신기에서 발신되는 마이<br>크로파를 수신기로 수신할<br>때, 그 사이를 측정물이 가<br>리면 검출합니다.    | 플로트부가 측정(액체)에<br>뜨면 스위치가 작동합니다. | 하나의 접지전국과 복수의<br>검출전극으로 구성됩니다.<br>접지전극과 검출전극을 측<br>정물(액체)로 도통하면 검<br>출합니다. |
| 특징              | 전기적 특성의 영향을 받<br>지 않는다.<br>부착에도 강하며 측정 조<br>건을 그다지 가리지 않는<br>다.                                                                                                                                  | 액체, 분체 모두 대응할 수<br>있는 만능성이 있습니다.                                                                                           | 가드 전극 채용으로 일반<br>정전 용량식에 비해 부착<br>의 영향을 덜 받기 때문에<br>슬러리 검출에 효과적입니<br>다.<br>측정물의 비유전율이나 프<br>로브의 길이를 알면 일반<br>적인 정전용량식은 기판의<br>선정이 필요하지만 어드미<br>턴스식은 불필요합니다. | 전율 측정물에 효과적입니                                                                                            | 액체, 분체 모두 대응 가능합니다.<br>소형으로 작은 탱크에 장<br>착할 때 효과적입니다.           | 측정물의 우산 비중, 비유<br>전율 등의 영향을 받지 않<br>고 계측할 수 있습니다.                          | 간단한 구조로 견고합니다.<br>마모나 부착에 강해 컨베<br>이어 슛의 오버플로우 검<br>출로 이용됩니다.<br>측정물의 전기적 특성(비유<br>전율이나 도전율)의 영향을<br>받지 않고 검출할 수 있습<br>니다. | 는 성질을 이용하여 벽돌<br>이나 유리, 세라믹, 수지 판<br>에 있어서 투과 시켜 레벨<br>검출이 가능합니다. | 매우 저렴합니다.                       | 매우 저렴합니다.                                                                  |
| 약점              | 가동부가 있어 정기적인<br>유지 보수(교환) 필요.<br>딱딱한 측정물은 패들의<br>회전축에 엉겨붙어 정지할<br>수 있습니다.<br>섬유상의 측정물은 패들부<br>에 얽혀 오작동 가능성 있습니다.<br>가벼운 분체 검출에는 적<br>합하지 않습니다.<br>비중이 큰 측정물은 그 하<br>중으로 인해 패들 부분이<br>휘어질 수 있습니다. | 저비 유전율 물질은 정전<br>용량의 변화가 적기 때문<br>에 검출이 어렵습니다.<br>기준은 비유전율 2.1 이상<br>입니다. (제조사 상담 필요)<br>부착성 있는 측정물의 조<br>정에는 한계가 있습니다.    | 저비 유전율 물질은 정전<br>용량의 변화가 적기 때문<br>에 검출이 어렵습니다.<br>기준은 비유전율 2.0 이상<br>입니다. (제조사 상담 필요)                                                                       | 손으로 잡아 뭉쳐지는 측<br>정물은 측정물 내에 센서<br>의 진동으로 틈새를 만들<br>가능성이 있어 검출할 수<br>없는 경우가 있습니다.<br>액체 검출은 할 수 없습니<br>다. | 큰 입경 측정물은 포크 프로브 틈사이에 끼여 오검<br>출이 발생할 수 있습니다.                  | 저항값이 너무 큰 물질은<br>전류가 흐르지 않기 때문<br>에 검출하지 못할 수 있습<br>니다.                    | 공간이 필요해 좁은 장소                                                                                                              | 발신기, 수신기의 2개소의<br>설치가 필요합니다.<br>액체 검출은 할 수 없습니<br>다.              | 는 방파관을 설치해야 합                   | 부착물이나 고착물로 통전<br>되어 오작동을 일으킬 수<br>있습니다.                                    |

MM190019-01 /Nov.2019 마쓰시마 메저 테크